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Unlike natural numbers, negative numbers do not have natural physical referents. How
does the brain represent such abstract mathematical concepts? Two competing hypothe-
ses regarding representational systems for negative numbers are a rule-based model, in
which symbolic rules are applied to negative numbers to translate them into positive num-
bers when assessing magnitudes, and an expanded magnitude model, in which negative
numbers have a distinct magnitude representation. Using an event-related functional mag-
netic resonance imaging design, we examined brain responses in 22 adults while they
performed magnitude comparisons of negative and positive numbers that were quantita-
tively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative
numbers were slower than positive numbers, and both showed a distance effect whereby
near pairs took longer to compare. A network of parietal, frontal, and occipital regions were
differentially engaged by negative numbers. Specifically, compared to positive numbers,
negative number processing resulted in greater activation bilaterally in intraparietal sulcus
(IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity
analysis revealed that neural responses in the IPS were more differentiated among positive
numbers than among negative numbers, and greater differentiation among negative num-
bers was associated with faster RTs. Our findings indicate that despite negative numbers
engaging the IPS more strongly, the underlying neural representation are less distinct than
that of positive numbers. We discuss our findings in the context of the two theoretical
models of negative number processing and demonstrate how multivariate approaches can
provide novel insights into abstract number representation.

Keywords: number cognition, symbolic number comparisons, distance effect, integers, negative numbers,

intraparietal sulcus, prefrontal cortex, representational similarity

INTRODUCTION
How are abstract mathematical concepts represented in the brain?
Negative integers are among the earliest abstract concepts encoun-
tered in mathematics curricula. Unlike positive numbers, nega-
tive numbers have no obvious perceptual referents, and there-
fore, children can struggle when learning about them (Liebeck,
1990; Moreno and Mayer, 1999). Nevertheless, most adults can
work with negative numbers, making them an ideal test case
for investigating the representation of relatively well-developed
abstract mathematical concepts. In the past 50 years, researchers
have uncovered many behavioral, cognitive, and neural properties
associated with positive numbers; much less is known about the
representation of negative numbers.

A standard paradigm for investigating mental representations
of positive numbers has participants quickly select which of two
numbers is quantitatively larger or smaller (Moyer and Lan-
dauer, 1967). A consistent finding is that participants are slower
to decide among near distance pairs (2 vs. 4) than far distance

pairs (2 vs. 9). This distance effect is thought to reflect an ana-
log magnitude representation for positive numbers that follows
Weber’s law (Dehaene, 2003). Research on negative integers has
also shown similar distance effects. For example, Tzelgov et al.
(2009) manipulated distance as a continuous variable (from 1 to
8) and found parallel linear slopes for positive and negative num-
bers, but longer overall reaction times (RTs) for negative numbers.
Varma and Schwartz (2011) compared near distance pairs (dis-
tance of 2 or 3) and far distance pairs (distance of 7 or 8), and
found parallel distance effects for negative and positive numbers,
with increased overall RT for negatives. Consistently, participants
are slower for negative than positive numbers, even when polarity
is marked by font color instead of a sign (Tzelgov et al., 2009) and
when sign and number are presented sequentially (Ganor-Stern
et al., 2010).

Two general accounts of negative number processing have been
proposed in the behavioral literature (Varma and Schwartz, 2011).
Each provides a different account to explain the findings that
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negative numbers show a distance effect and take longer to com-
pare than positive numbers. The first proposes that participants
reason about negative numbers by applying abstract rules on top
of an existing magnitude representation of positive integers (Fis-
cher and Rottman, 2005; Shaki and Petrusic, 2005; Ganor-Stern
and Tzelgov, 2008; Tzelgov et al., 2009). In this rule-based model,
negative numbers are first transformed into positive numbers for
magnitude comparison, and individuals do not represent nega-
tive number magnitudes in their own right. The application of
rules explains why the negative numbers take longer to compare
than the positives. Supporting the rule-based account, Fischer and
Rottman (2005) found that when judging whether a number was
above or below zero, participants’ RTs were affected by the absolute
magnitude of the number for positives, but not for negatives.
This suggests that for negatives, participants were only considering
polarity, while for positives they considered magnitude. Addition-
ally, Ganor-Stern and Tzelgov (2008) and Tzelgov et al. (2009)
explored the semantic congruence effect with positive and nega-
tive numbers. In this effect, participants are faster to make “lesser”
magnitude judgments for small numbers and “greater” judgments
for large numbers. The authors found a semantic congruence effect
for positive comparisons but not for negative comparisons. Fischer
and Rottman (2005) looked at the SNARC effect, in which partic-
ipants are faster to make parity judgments with their left hands
for small numbers and with their right hand for large numbers.
They found a traditional SNARC effect for positive numbers, but
an inverse SNARC effect for negative numbers. Participants were
faster to use their left hands to make parity judgment responses
for large negatives (e.g., −1), and faster to use their right hand
to respond to small negatives (e.g., −9). This finding suggests that
participants may strip the sign from the negative number and make
judgments about the resulting positive numbers. These results are
consistent with the proposal that participants use rules to process
negative numbers.

The second, expanded magnitude, model proposes that negative
numbers are represented as magnitudes in their own right (Fischer,
2003; Varma and Schwartz, 2011). In this model, “−3” is encoded
as a magnitude distinct from “3.” However, because most indi-
viduals have considerably less experience with negative numbers,
the representations for negative numbers may be less-refined than
those of positive numbers. By this account, negative numbers take
longer to compare than positives because they have less resolution
(Varma and Schwartz, 2011). Supporting an expanded magni-
tude model, Fischer (2003) found that when adults compared
two negative numbers, they were faster when the digit magni-
tudes followed the canonical order of the number line (e.g., −9,
−4), than when ordered by absolute value (e.g., −4, −9). In con-
trast to Tzelgov and colleagues (Ganor-Stern and Tzelgov, 2008;
Tzelgov et al., 2009), Varma and Schwartz (2011) found a polarity-
dependent semantic congruence effect. For positives, participants
were faster to judge the greater number, and for negatives, they
were faster to judge the lesser number. This suggests negatives are
considered small in comparison to positive numbers. Addition-
ally, for mixed magnitude comparisons which involved a positive
and a negative number, Varma and Schwartz (2011) and Krajcsi
and Igacs (2010) found an inverse distance effect, with faster RTs
for near comparisons, suggesting that people are reasoning about

magnitude and not only focusing on polarity in mixed compar-
isons (but see Tzelgov et al., 2009 for studies which failed to find
distance effects for mixed comparisons).

In sum, the behavioral research has been inconclusive with
respect to the representation of negative numbers, with several
studies supporting each of the leading models. One explanation of
this inconsistency is that adults have multiple ways of interacting
with negative numbers dependent on the task at hand (Ganor-
Stern et al., 2010; Varma and Schwartz, 2011). For example, Shaki
and Petrusic (2005) found an inverse SNARC effect when positive
and negative comparisons were presented in separate blocks, con-
sistent with a rule-based account. However, they found a standard
SNARC effect, consistent with an extended magnitude account,
when positive and negative comparisons were intermixed. When
negative trials are presented in a block, participants may adopt a
rule-based strategy, knowing it will work efficiently for all trials. In
contrast, intermixing negative and positive trials may lead partic-
ipants to consider magnitude for each trial, because they cannot
rely on a single rule across trials.

The current study explores the neural correlates of negative
number processing in the context of a symbolic magnitude com-
parison task where positive and negative trials are intermixed.
The intraparietal sulcus (IPS) within the dorsal aspects of the
posterior parietal cortex has been implicated in numerical pro-
cessing of positive numbers. IPS activation has also been found
more generally for tasks requiring spatial attention and serializa-
tion (Majerus et al., 2007; Egner et al., 2008) and there is some
controversy about the specificity of the IPS for numerical mag-
nitude processing (Shuman and Kanwisher, 2004; Ansari et al.,
2005; Cohen Kadosh et al., 2008b). Among the strongest evi-
dence for its role in numerical processing is that IPS responses are
consistently modulated by numerical distance between positive
numbers. In symbolic number comparison tasks, where spatial
attention demands are held constant, functional magnetic reso-
nance imaging (fMRI) and ERP studies have demonstrated that
activation in the IPS is modulated by distance between the num-
bers, with near pairs eliciting greater IPS activity than far pairs
(Pinel et al., 2001; Gobel et al., 2004; Ansari et al., 2005; Kauf-
mann et al., 2005). This “neural distance effect” is also found in
the IPS when non-symbolic numerosity is manipulated (Piazza
et al., 2004; Ansari and Dhital, 2006; Kaufmann et al., 2008;
Cantlon et al., 2009) and when comparing perceptual features,
such as the physical size and luminance of symbols (Pinel et al.,
2004; Cohen Kadosh et al., 2005, 2007, 2008a; Kaufmann et al.,
2005).

Very little is currently known about “neural distance effects”
for negative numbers in the IPS and or other brain areas like the
prefrontal cortex, which is sensitive to task difficulty and rule-
based processing. To our knowledge no previous neuroimaging
study has explicitly manipulated numerical distance on com-
parisons with negative numbers. Based on the positive integer
literature, we expect negative number processing to rely on the
IPS. An important question is whether negative number process-
ing engages this area differentially from the positive numbers. One
imaging study to date has examined the representation and pro-
cessing of negative numbers. Chassy and Grodd (in press) used
a block fMRI design to investigate neural activity evoked by four
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increasingly abstract comparison tasks. In separate blocks, partic-
ipants compared the size of disks, the number of dots, positive
integers, and negative integers. Dots and positives ranged from 1
to 9, and negatives ranged from −1 to −9. Specific distance com-
parisons were randomly selected from all possible combinations.
A conjunction analysis revealed that all four comparison tasks
activated the bilateral IPS. The authors found greater activity for
negative, vs. positive, number comparisons in the superior orbital
gyrus. Surprisingly, there was no differential activation of the IPS
or any other subdivision of the lateral parietal and prefrontal cor-
tices for negative over positive numbers. Notably, the authors did
not examine numerical distance effects.

In the current study, we used event-related fMRI to investi-
gate the processing and representation of negative and positive
numbers. A factorial design crossed number type (positive vs. neg-
ative vs. mixed) and distance (near vs. far). A univariate analysis
explored the neural correlates of number type and distance, and we
discuss the results in relation to the two competing models of inte-
ger representation. A complication in interpreting the results of
signal level differences between negative and positive comparisons
is that negative comparisons take longer than positives, and sig-
nal level differences could be due to longer processing time. Thus,
it is critical to address the extent to which activation differences
reflect neural responses specific to negative number processing, as
opposed to general task difficulty.

We complemented traditional univariate analyses of signal
change with a representational similarity analysis (RSA), a multi-
voxel approach for examining stimulus-related brain responses
(Kriegeskorte et al., 2008). RSA assesses the voxel-wise correlation
between the activation patterns of two task conditions within an
ROI. Because RSA is based on correlation of spatial activity pat-
terns, it is independent of overall activation differences between
conditions. This allows us to examine number representations
independent of the effect of RT on signal level. Here, we examine
the similarity of spatial activity patterns for near and far compar-
isons within positive and negative trials. If negative numbers have
a less-refined representation of magnitude, there should be higher
similarity between near and far problems for negative, compared
to positive numbers. In this view, the negative numbers do not
have an equally well-developed differentiation of small and large
magnitudes, leading to greater overlap in their representations.
In contrast, if negative number comparison relies on the magni-
tude representation of positive numbers, the rule hypothesis would
predict that the similarity between near and far comparisons
should be the same across negatives and positives. RSA provides
a complementary, multivariate measure of neural distance effects,
instantiated as representational distinctiveness between near and
far trials.

To further investigate number representation in the IPS in
an anatomically unbiased manner, we used cyto-architectonically
defined maps to quantify both the overall level of activity (Wu
et al., 2009; Chassy and Grodd, in press; Rosenberg-Lee et al.,
2011) and RSA (Ashkenazi et al., in press). Observer independent
cyto-architectonic mapping methods have revealed three distinct
subdivisions of the IPS in each hemisphere. In the anterior to pos-
terior direction they are hIP2, hIP1 (Choi et al., 2006), and hIP3
(Scheperjans et al., 2008). Together, the univariate and multivariate

approaches allowed us to probe differential neural responses and
representations to negative numbers in greater depth than has been
possible.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-two right-handed individuals (16 females), mean age 24.2
(SD 6.8), participated in the study. Three additional participants
were excluded due to technical problems during data collection
(two participants), or failure to complete the study (one partic-
ipant). Participants were drawn from a paid subjects pool, and
were compensated for their participation. All participants pro-
vided written informed consent in compliance with Stanford
University’s Human Research Protection Program.

TASK DESIGN AND STIMULI
The study design was modeled on behavioral research by Varma
and Schwartz (2011). Two single-digit integers were displayed on
a screen. Participants indicated the greater (or lesser) of the two
numbers by pressing a button on a button box. The greater/lesser
task demand alternated between blocks, with the order coun-
terbalanced across participants. Problems were of three types
(intermixed within runs): In positive comparison problems, both
numbers were positive (e.g., 6, 8). In negative comparisons, both
were negative (e.g., −6, −8). In mixed comparisons, one number
was positive and the other negative (e.g., −6, 2). Distance was also
manipulated, such that half of the problems of each type were near
comparisons and half were far comparisons. In near comparisons,
the difference between the numbers was two or three (e.g., 7, 9).
In far comparisons, the difference was seven or eight (e.g., 2, 9).
All problems are presented in Table 1.

Stimuli were presented in four runs using a fast event-related
design. There were 72 trials in each run, yielding 288 total trials (48
per condition). Within each run, participants saw an equal num-
ber of trials from all six conditions, presented in a random order.
Left/right configuration of the digits (e.g., 2, 7 vs. 7, 2) was coun-
terbalanced within each run. For the far trials, each problem was
repeated twice within a run, in each configuration, because there
are fewer possible problems of distance seven or eight among the
single digits.

Stimuli were displayed using E-prime presentation software
(Psychological Software Tools, Pittsburgh, PA, USA), and were
projected onto a screen at the head of the scanner bore. Partic-
ipants viewed the screen through a mirror directly in their line of
vision. The two digits were presented in green on a black back-
ground, equidistant from the center of the screen. Participants
held a button box in their right hand and indicated which number
was greater (or lesser) by pressing their index finger to choose the
number on the left, and their middle finger to choose the number
on the right. Before each stimulus was presented, participants saw
a blank screen, jittered between 0.5 and 5.5 s, in 100 ms increments.
Participants then saw a center fixation cross for 500 ms, followed
by the stimulus, which was present for 1500 ms (see Figure 1).

Prior to entering the scanner, participants completed a brief
20 problem training session. At the beginning of each run in the
scanner, two short instruction screens reminded the participants
of the task and informed them whether they were making a greater
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Table 1 | Experimental stimuli for each number type and distance.

Positive Negative Mixed

Near [(1, 3); (1, 4); (2, 4)

(6, 8); (6, 9); (7, 9)]a
[(−1, −3); (−1, −4); (−2, −4)

(−6, −8); (−6, −9); (−7, −9)]a
[(1, −2); (−1, 2); (−1, 1)]b

Far [(1, 9); (1, 8); (2, 9)]b [(−1, −9); (−1, −8); (−2, −9)]b [(1, −6); (−1, 6); (1, −7)

(−1, 7); (2, −6); (−2, 7)]a

aStimuli repeated two times per run; bstimuli repeated four times per run.

FIGURE 1 |Task timing. Each trial began with a variable fixation period
(0.5–5.5 s), followed by a fixation cross (500 ms) and presentation of two
numbers for magnitude comparison (1500 ms).

or lesser judgment for the run. Participants then completed two
unrecorded practice trials. Data collection began after the prac-
tice trials and lasted 5 min and 38 s. Thus, the time between the
instructions and the first trial was approximately 20 s, including
14 s for signal equilibration and the initial jitter period.

fMRI DATA ACQUISITION
Images were acquired on a 3-T GE Signa scanner using a stan-
dard GE 8-channel head coil (software Lx 8.3). Head movement
was minimized during scanning with small cushions fit between
the head and the coil. A total of 30 axial slices (4.0 mm thick-
ness, 0.5 mm spacing) parallel to the AC–PC line and covering
the whole brain were imaged using a T2∗ weighted gradient
echo spiral in/out pulse sequence (TR = 2000 ms, TE = 30 ms, flip
angle = 80˚; Glover and Lai, 1998). The field of view was 20 cm,
and the matrix size was 64 × 64, providing an in-plane spatial res-
olution of 3.125 mm. To reduce blurring and signal loss arising
from field inhomogeneities, an automated high-order shimming
method based on spiral acquisitions was used before acquiring
functional MRI scans (Kim et al., 2002).

fMRI DATA ANALYSIS
Preprocessing
The first seven volumes were discarded to allow for signal equi-
libration effects. A linear shim correction was applied separately
for each slice during reconstruction using a magnetic field map
acquired automatically by the pulse sequence at the beginning of
the scan (Glover and Lai, 1998). Functional MRI data were then
analyzed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm).

Images were realigned to the first scan to correct for motion
and slice acquisition timing. Images were spatially normalized
to standard MNI space using the echo-planar imaging tem-
plate provided with SPM8, resampled every 2 mm using trilinear
sinc interpolation, and smoothed with a 6-mm full-width half-
maximum Gaussian kernel to decrease spatial noise prior to statis-
tical analysis. Translational movement in millimeters (x, y, z) and
rotational motion in degrees (pitch, roll, yaw) was calculated based
on the SPM8 parameters for motion correction of the functional
images in each subject. No participant had movement greater than
±3 mm translation or ±3˚ of rotation.

Univariate individual and group analysis
Statistical analysis was performed on individual and group data
using the general linear model implemented in SPM8. Task-
related regressors were modeled as boxcar functions correspond-
ing to each condition. There were six regressors (three num-
ber types × two distances) for the correct trials, with one addi-
tional regressor for all incorrect trials. Additionally, the six move-
ment parameters generated from the realignment procedure were
included as regressors of no interest. Regressors of interest were
convolved with a hemodynamic response function and a time
derivative to account for voxel-wise latency differences in hemody-
namic response. Low-frequency drifts at each voxel were removed
using a high-pass filter (0.5 cycles/min) and serial correlations were
accounted for by modeling the fMRI time series as a first degree
autoregressive process (Friston et al., 1997).

Group analysis was performed using a random-effects model
that incorporated a two-stage hierarchical procedure (Holmes and
Friston, 1998). Group level activation was determined using indi-
vidual subject contrast images and a second-level random-effects
analysis. At the group level, one sample t -tests were computed
using the following individual level paired-sample t -tests (1)
Number Type (positive vs. negative); (2) Distance (Near vs. Far);
and (3) the interaction of Number type and Distance. After gray
matter masking, significant activation clusters were determined
using a height threshold of p < 0.001, and an extent threshold of
30 voxels was determined using Monte Carlo simulations and a
family wise error (FWE) correction for multiple comparisons at
p < 0.05 (Forman et al., 1995; Ward, 2000).

In each iteration of the Monte Carlo procedure, a 3-D image
with the same resolution and dimensions as the fMRI scan was
randomly generated and smoothed with a 6-mm FWHM Gauss-
ian kernel for consistency with the inclusive mask used to report
the results of the general linear model analysis. A gray matter mask
was then applied to this image. The maximum cluster size at a
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given height threshold was recorded for each iteration, and 10,000
iterations were performed. At a height threshold of p < 0.001, less
than 5% of the iterations had a maximum cluster size greater than
30 voxels.

Functionally defined regions of interest were compared to cyto-
architectonic maps of parietal cortex, using the Anatomy Toolbox
in SPM8 (Eickhoff et al., 2005). This toolbox computes three statis-
tics to characterize the overlap between functional and structural
regions: (1) the number of voxels in the functional cluster which
overlap with a structural ROI, (2) the percentage of the func-
tional cluster that overlaps with the structural ROI, and (3) the
percentage of the structural ROI that overlaps with the functional
ROI. These measures are needed to fully characterize clusters of
differing size.

Region of interest analyses
Two sets of ROIs were identified: (1) Functional ROIs were con-
structed using 10 mm spheres centered at the peaks of significant
activation in the paired-sample t -tests. (2) Unbiased anatom-
ical ROIs were created based on cyto-architectonically distinct
subdivisions of the IPS (Eickhoff et al., 2005). Three distinct sub-
divisions of the IPS have been identified: hIP2 on the anterior
lateral bank, hIP1 which is anterior and lateral compared to hIP2
(Choi et al., 2006), and hIP3 which is posterior to both regions
(Scheperjans et al., 2008). These subdivisions have previously
been used to map activation in arithmetic tasks (Wu et al., 2009;
Rosenberg-Lee et al., 2011). For each ROI, average beta scores for
the contrasts of negative number comparisons vs. rest and pos-
itive number comparisons vs. rest were entered into a repeated
measures ANOVA. As a control analysis, an ANCOVA model with
RT differences (Negative RT–Positive RT) as a between-subjects
covariate was used to investigate whether activation differences
between negative and positive number processing arose from RT
differences.

Representational similarity analysis
Representational similarity analysis (RSA) considers the voxel-
wise similarity between the activation patterns of task conditions
within an ROI (Kriegeskorte et al., 2008). Using the individual
t -maps employed in the univariate group analyses, we computed
Pearson correlations between the near and far problems for posi-
tive trials and again separately for negative trials. This correlation
represents the spatial similarity in activation patterns between the
two conditions, independent of overall activation level. The indi-
vidual r-values were transformed to a normal distribution using
Fisher’s r-to-z transformation: z i,j = 0.5 × ln((1 + r i,j)/(1 − r i,j)).
RSA correlations were computed in each functional and anatom-
ical ROI.

RESULTS
BEHAVIORAL
Accuracy
Across all cells of the design, average accuracy was above 90%.
Accuracy data were analyzed using a three Number Type (posi-
tive, negative, mixed) × 2 Distance (near, far) repeated measures
ANOVA. There was a main effect of number type [F(2,42) = 20.0,
p < 0.001]. There was no main effect of distance [F(1,21) = 1.5,
p = 0.230], and a marginal number type by distance interaction
[F(2,42) = 2.9, p = 0.065]. Post hoc comparisons using the Tukey
HSD test at the p < 0.05 level revealed that participants were
significantly more accurate on mixed comparisons than positive
comparisons, which were more accurate than negative compar-
isons (see Figure A1 in Appendix). Post hoc investigation of the
number type by distance interaction for negative and positive
trials showed that for far comparisons, there were no accuracy
differences between negative and positive trials [t (21) = −0.84,
p = 0.410]. However, negative near comparisons were signifi-
cantly less accurate than positive near comparisons [t (21) = −3.6,
p = 0.002, see Figure 2].

FIGURE 2 | Behavioral performance. Participants were less accurate on near comparisons with negative numbers than positive numbers (**p < 0.01), but did
not differ on far comparisons. Participants were slower on negative problems than positive problems for both near and far comparisons (***p < 0.001). Error
bars represent ±1 SE.
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Response time
For each participant, the mean RT and SD on correct trials
were computed for each number type and distance. RTs more
than 2.5 SD from the individual mean were removed. A three
Number Type (positive, negative, mixed) × 2 Distance (near, far)
repeated measures ANOVA revealed a significant main effect of
number type, [F(2,42) = 180.0, p < 0.001], a main effect of dis-
tance, [F(1,21) = 37.7, p < 0.001], and a number type by distance
interaction, [F(2,42) = 9.8, p < 0.001]. Post hoc analysis using the
Tukey HSD test at the p < 0.05 level revealed that negative compar-
isons were significantly slower than positive comparisons, which
were slower than mixed comparisons. The effect of distance was
significantly different for mixed comparisons than for positive and
negative comparisons [F(1,21) = 22.9, p < 0.001],which did not
differ from each other [F(1,21) = 0.36, p = 0.556, see Figure A1 in
Appendix]. t -Tests confirmed that there were distance effects, i.e.,
near comparisons were slower than far comparisons, for positive
[t (21) = 5.4, p < 0.001] and negative comparisons [t (21) = 4.2,
p < 0.001] but not the mixed comparisons [t (21) = 0.1, p = 0.890,
see Figure A1 in Appendix]. Additionally, for both near and far
comparisons negative trials were significantly slower than pos-
itive trials [t (21) = 13.3, p < 0.001, t (21) = 12.2, p < 0.001, see
Figure 2].

BRAIN IMAGING: WHOLE BRAIN UNIVARIATE ANALYSIS
Mixed trials are not considered further in the main text because
they failed to show the classic indicator of magnitude processing,
differential RTs for near and far comparisons. These trials may
have been solved with the strategy of identifying a negative sign to
find the smaller number without considering magnitude. Here we
focus on pure negative and positive comparisons, which did show
robust distance effects. GLM results comparing mixed vs. positive
and negative trials are presented in the Appendix (Table A1 in
Appendix).

Negative numbers elicit greater fMRI signal than positive numbers
in distributed cortical regions
Compared to positive numbers, negative numbers elicited greater
activity in the bilateral middle frontal gyrus (MFG), pre-
supplementary motor area (Figure 3A), and bilateral inferior
occipital cortex and the lingual gyrus (Figure 3B). Three clus-
ters in the left IPS and one in the right IPS also had greater
activity for negative over positive numbers (Figure 4). The IPS
regions tended to overlap with hIP1 and hIP3 subdivisions of
the parietal cortex (Table A2 in Appendix). Only the posterior
cingulate cortex showed greater activity for positive numbers rel-
ative to negative numbers, but this difference arose from greater
deactivation to negative numbers (Figure 4). Table 2 provides fur-
ther details about all functional clusters that showed differences
between negative and positive numbers.

Because RTs are longer for negative than positive trials, greater
activity for negative numbers could be driven by task difficulty.
To test this possibility, in each brain region that showed dif-
ferences between negative and positive numbers (Table 2) we
conducted a repeated measures ANCOVA with the difference in
RT between negative and positive as a covariate. None of the

differences between negative and positive numbers remained sig-
nificant in any of the ROIs (p > 0.196). There were no significant
interactions between RT difference and number type in any ROI
(ps > 0.130).

Near trials elicit greater fMRI activity than far trials in premotor and
somatosensory cortex
Collapsing across negative and positive numbers, near trials
showed increased activation over far trials in the left premotor cor-
tex and bilateral somatosensory cortex (SC) extending posteriorly
into the superior parietal lobe (SPL; Table 3). In the left premo-
tor cortex, differences reflect greater activation for near, compared
to far, trials, with both trial types showing activation above base-
line. In the bilateral SC/SPL, there was greater activation for near,
compared to far, trials, but neither differed from baseline.

Number type interacts with distance in right temporal–occipital
fusiform cortex
For the interaction between number type and distance, only the
right temporal–occipital fusiform cortex (TOF) was statistically
significant, but this effect was driven by differential levels of deac-
tivation rather than greater activation during number comparison
(Figure 5).

BRAIN IMAGING: ROI ANALYSES
Left IPS regions of interest show marginally significant effects of
distance for negative numbers
We examined differential responses in six anatomically defined
IPS subdivisions (left and right hIP1, hIP2, hIP3) derived from
previous cyto-architectonic mapping studies (Choi et al., 2006;
Scheperjans et al., 2008). A four-way repeated measures ANOVA
was conducted using activation level measures based on beta para-
meter estimates, with number type, distance, ROI, and hemisphere
as within-subjects factors. There was a significant main effect of
number type [F(1,21) = 11.4, p = 0.003], with negative numbers
showing greater activation than positive numbers. There was no
main effect of distance, ROI, or hemisphere. However there was
a significant number type by distance by hemisphere interac-
tion [F(1,21) = 5.6, p = 0.028]. Combining the IPS sub-regions,
post hoc analysis revealed that for negative numbers, the left
IPS showed a marginally significant distance effect [t (21) = 2.0,
p = 0.059], but the right did not. There were no significant dis-
tance effects for positive numbers in either left or right IPS. In the
four-way ANOVA there were no other significant interactions with
distance (all ps > 0.37) (Figure 6).

BRAIN IMAGING: REPRESENTATIONAL SIMILARITY ANALYSIS
IPS has distinct distance representations for positive and negative
numbers
We used RSA to examine similarity of IPS response patterns to near
and far trials. RSA between these two trial types was computed
separately for positive and negative numbers.

Functionally derived ROIs. We first examined RSA in four func-
tional ROIs defined as 10mm spheres around activation peaks of
the IPS regions that showed greater activation to negative vs. posi-
tive numbers. The left IPS ROI centered at (−30, −52, 38) showed
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a greater near–far similarity for negative numbers than for positive
numbers [t (21) = 3.2, p = 0.004]. This effect was still significant at
p < 0.05, after applying a Bonferroni correction for multiple com-
parisons over the four parietal ROIs (Figure 7A). Furthermore,
in this region, within negative numbers, individual differences
in representational similarity was correlated with RTs (r = 0.458,

p = 0.032), such that more distinct representations were associated
with faster RTs (Figure 7B).

Cyto-architectonically defined ROIs. Additional analyses
were conducted using the six (three in each hemisphere)
cyto-architectonically defined IPS ROIs described in the previous

FIGURE 3 | Brain regions that showed significant differences in activation

between positive and negative numbers. (A) Frontal regions. Negative
numbers had greater prefrontal cortex activation bilaterally in the middle
frontal gyrus (MFG) and the pre-supplementary motor area (SMA). In the right
MFG, beta value plots reveal activation above baseline for negative numbers,
but not for positive numbers. (B) Ventral visual regions. Greater activation for

negative numbers was detected in the bilateral lingual gyrus (LG), which was
driven by greater deactivation for positive numbers. In the bilateral inferior
lateral occipital cortex (LOC) there was strong activation above baseline for
both number types, with greater activation for negative numbers. In the left
inferior temporal gyrus (ITG), activation was greater for negative numbers,
though it did not differ from baseline for either number type.
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FIGURE 4 | Posterior parietal cortex regions that showed significant

activation differences between positive and negative numbers. In the
anterior left intraparietal sulcus (IPS) and superior parietal lobule (SPL),
there was strong activation for both number types, with greater activation
for negative numbers. In the posterior left IPS, there was stronger

activation for negative than positive numbers, though neither differed from
baseline. In the right IPS, there was significant activation for negative
numbers; positive numbers did not differ from baseline. The posterior
cingulate cortex (PCC) showed greater deactivation to negative compared
to positive numbers.

section. A repeated measures ANOVA with number type (neg-
ative, positive), ROI (hIP1, hIP2, hIP3), and hemisphere (L,
R) as within participant factors revealed a significant effect of
ROI [F(2,42) = 3.42, p = 0.042]. There was no main effect of
number type or hemisphere, but there was a marginal number
type by ROI interaction [F(2,42) = 3.12, p = 0.054]. To fur-
ther explore this marginally significant interaction, we used
a post hoc ANOVA to examine differences between number
types separately for each ROI. The F-tests revealed that rep-
resentational similarity was greater within negative than pos-
itive numbers in hIP1 [F(1,21) = 5.6, p = 0.027], but did not
differ in hIP2 and hIP3 (ps > 0.26). Furthermore, in the left
hIP1, representational similarity within negative numbers was
again correlated with RTs (r = 0.508, p = 0.016), such that the
more dissimilar the representation of near and far negative tri-
als, the faster the RT (Figure 8), although this effect was not
significant when using a Bonferroni correction to control for
six comparisons. No such association was found between RT
and representational similarity in the IPS for positive compar-
isons in either the functional or cyto-architectonic ROIs (all
ps > 0.57).

DISCUSSION
While a large body of neuroscience research has addressed the
representation of positive numbers, much less is known about the
negative numbers. In this study, we examined neural responses
and representations of negative integers using traditional univari-
ate analyses and a novel multivariate analysis of representational
similarity. To our knowledge, this is first brain imaging study to
use a distance manipulation to investigate the representation of
negative numbers. Compared to positives, negative number com-
parisons elicited greater activation in several parietal, frontal, and
occipital regions, including bilateral IPS, bilateral MFG, and bilat-
eral LOC. Univariate analyses failed to reveal strong neural distance
effects in the IPS, but the multivariate RSA revealed a less differen-
tiated representation for negative, compared to positive, numbers.
Furthermore, neural representations were associated with indi-
vidual differences in performance such that individuals with more
distinct neural representations of negative magnitudes performed
faster.

The IPS is crucial to positive number processing, and in the fol-
lowing sections, we focus on the role of the IPS in negative number
processing, first in terms of overall signal levels and then in terms
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of multi-voxel representations. Next, we consider the potential
role of the prefrontal cortex in the rule-based processing of neg-
ative numbers. Finally, we discuss our findings in the context of
the previous behavioral research on negative numbers and demon-
strate how multivariate approaches can provide novel insights into
abstract number representation.

IPS RESPONSE TO NEGATIVE AND POSITIVE INTEGER COMPARISON
Both positive and negative numbers elicited robust bilateral activ-
ity in the IPS. For negative numbers compared to positive numbers,

Table 2 | Brain areas that showed differences in activation to negative

and positive numbers.

Brain region Peak MNI

coordinates

Peak

t-value

No. of

voxels

x y z

POSITIVETRIALS > NEGATIVETRIALS

Bilat PCC 0 −42 46 4.65 87

NEGATIVETRIALS > POSITIVETRIALS

Left ITG −40 −56 −6 5.64 237

Right IPS 30 −64 48 5.43 396

Bilat pre-SMA 2 16 48 5.36 147

Bilat LG −16 −78 2 5.27 1621

Right inferior LOC 40 −88 −8 4.67 215

Left IPS −30 −52 38 4.65 89

Left posterior IPS −24 −68 42 4.46 84

Right MFG 54 32 24 4.43 35

Left MFG −32 14 30 4.4 40

Left inferior LOC −46 −80 −10 4.16 49

Left SPL/IPS −38 −54 54 4.11 44

PCC, posterior cingulate cortex; ITG, inferior temporal gyrus; IPS, intraparietal sul-

cus; SMA, supplementary motor cortex; LG, lingual gyrus; LOC, lateral occipital

cortex; MFG, middle frontal gyrus; SPL, superior parietal lobule.

whole brain analyses revealed greater activity in a distributed set of
regions within the IPS, specifically three clusters in the left IPS and
one cluster in the right (Figure 4). In contrast to these findings, the
only other study of negative number processing to date (Chassy
and Grodd, in press) found bilateral IPS activation for negative
numbers, compared to fixation baseline, but not when activation
to negative and positive numbers were directly compared. In cyto-
architectonic ROIs (Choi et al., 2006; Scheperjans et al., 2008),
we found significant activation for negative, compared to positive,
numbers in all three IPS subdivisions bilaterally (Figure 6). The
bilateral IPS is consistently activated in studies of symbolic and
non-symbolic natural number processing (see Arsalidou and Tay-
lor, 2011, for a review), and our results extend previous findings
on positive number comparisons (Pinel et al., 2001; Ansari et al.,
2005; Kaufmann et al., 2005) to negative numbers.

Negative numbers took longer to process, suggesting that task
difficulty may drive differences in activation to negative and
positive numbers. Indeed, after covarying out RT, we found no
differences between negative and positive numbers, highlighting
the difficulty of disentangling general task difficulty effects from
polarity-specific processing. Similar findings likely apply in the
domain of positive number comparisons, where near distance
comparisons are known to have longer RT and elicit greater activa-
tion in the IPS compared to far number comparisons. Few studies
have considered whether these effects are independent of RT differ-
ences (Gobel et al., 2004; Ansari et al., 2005; Kaufmann et al., 2005).
Further studies are needed to examine the relation between IPS
activation and RT in both number types, for example by matching
RT on specific sets of trials. RSA, which is independent of over-
all signal level differences, provides a complementary approach to
this problem, as discussed below.

STRONG BEHAVIORAL AND WEAK VOXEL-WISE NEURAL DISTANCE
EFFECTS FOR POSITIVE AND NEGATIVE NUMBERS
Behavioral distance effects are thought to reflect an analog mag-
nitude representation of positive numbers (Moyer and Landauer,

Table 3 | Brain areas that showed an effect of distance and an interaction of number type by distance.

Brain region Peak MNI coordinates Peak t -value No. of voxels

x y z

MAIN EFFECT OFTYPE

Near > far

Left premotor cortex −28 −18 72 4.76 49

Left SPL/somatosensory −34 −42 70 4.68 71

Right SPL/somatosensory 36 −38 70 4.46 39

Far > near

No significant clusters

INTERACTION OFTYPE BY DISTANCE

Negative (near–far) > positive (near–far)

Right TOF 28 −48 −12 4.71 40

Positive (near–far) > negative (near–far)

No significant clusters

SPL, superior parietal lobule; TOF, temporal occipital fusiform.
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FIGURE 5 | Brain areas that showed significant effects of distance. (A)

Main effect of distance. Left premotor cortex and bilateral somatosensory
cortex (SC) showed greater activity for near than far comparisons. (B) Number
type by distance interaction. There was a significant interaction of distance

with number type in the right temporal–occipital fusiform cortex (TOF),
reflecting greater deactivation for near than far comparisons for positive
numbers, and greater deactivation for far than near comparisons for the
negative numbers.

1967) and neural distance effects in the IPS have led to the sugges-
tion that it is the locus of such a representation (Dehaene, 2003).
In the current study we found distance effects in RT for both
negative and positive numbers. Negative number comparisons also
displayed a distance effect in accuracy, with near trials being signif-
icantly less accurate than far trials. Given these behavioral effects,
we expected greater activity for near than far trials. Instead, whole
brain univariate analyses did not show a significant effect of dis-
tance in the IPS, nor did we find a significant interaction between
number type and distance. Cyto-architectonically defined ROIs
showed a marginal effect of distance in the left IPS for negative
problems, driven by strong activity for negative near trials. Taken
together, these findings suggest that despite strong behavioral dis-
tance effects for positive and negative numbers, voxel-wise neural
distance effects can be weak. Intermixing negative, positive, and
mixed problems within each run may have increased transient
responses from switching between problem types, which also dri-
ves IPS activity (Pessoa et al., 2009), making it difficult to detect
the more subtle differences between near and far trials.

WEAK REPRESENTATION OF NEGATIVE NUMBERS IN IPS
In contrast to univariate analysis,RSA revealed differences between
neural representations of near and far comparisons across the two

number types. Neural responses in the IPS were less differenti-
ated for negative than positive numbers. Specifically, there was
greater similarity between the multi-voxel activity patterns for
near and far negative number pairs than near and far positive
pairs. That is, there were smaller neural representational distance
effects for negative numbers than for positive numbers. Critically,
increased representational differentiation between near and far
negative numbers was associated with faster response times across
subjects, consistent with a broader claim that greater differenti-
ation in neural representation facilitates comparative processes.
We suggest that greater experience with positive numbers leads
to more distinct representations compared to negative numbers
(Rosenberg-Lee et al., 2009). This view of a protracted refinement
of IPS activity with experience is consistent with developmental
research showing that children activate the IPS less than adults,
but the differences are greater for symbolic number comparisons
(Ansari et al., 2005) than for non-symbolic comparison (Ansari
and Dhital, 2006).

Representational similarity analysis in both the functional and
structural ROI implicated a mid-anterior region of the IPS, the
hIP1, as a common locus of less differentiated representations for
negative numbers. Resting state fMRI and diffusion tensor imag-
ing analyses have shown that relative to the posterior-most IPS
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region hIP3, hIP1 has greater functional and structural connec-
tivity with lateral prefrontal cortex, while hIP3 is more strongly
connected to ventral visual areas (Uddin et al., 2010). Uddin et al.
(2010) propose that hIP3 may transform incoming sensory infor-
mation into quantity representations, whereas hIP1 “may support
more complex aspects of numerical and mathematical informa-
tion processing via their interconnections with fronto-parietal
circuits” (Uddin et al., 2010, p. 2644). In light of these functional
dissociations, the greater visual similarity between negative stim-
uli (i.e., the minus sign), might have suggested hIP3 as a likely
area for RSA differences. Instead, the differences were in hIP1,

FIGURE 6 | Distance effects in cyto-architectonic maps of the

intraparietal sulcus (IPS). There was significant activation for both number
types and both distances in the left and the right IPS (combining hIP1, hIP2,
and hIP3). There was a significant number type by distance by hemisphere
interaction (p = 0.028). The left IPS showed a marginally significant effect of
distance for negative numbers (p = 0.059) but not for positive numbers.
Neither number type showed a distance effect in the right IPS.

suggesting that the representational difference between negative
and positive numbers may reflect more abstract mathematical
concepts.

PFC DIFFERENCES AND TASK DIFFICULTY
In contrast to the IPS, the prefrontal cortex was robustly engaged
only for the more demanding task of negative number compar-
ison. The left and right MFG also showed greater activation for
negative, compared to positive, numbers. However, we did not find
greater prefrontal cortex activation over baseline for positive num-
bers. While lateral prefrontal cortex activity is often reported for
arithmetic tasks, previous studies of number processing have not
consistently found activation in this area (Arsalidou and Taylor,
2011). Additional analyses using RT as a covariate in an ANCOVA
model suggested that prefrontal activation could be related to
task difficulty. More targeted experimental designs are needed to
directly investigate this possibility.

CONNECTING fMRI RESULTS TO BEHAVIORAL RESEARCH ON NEGATIVE
NUMBERS
Consistent with previous findings on integer comparison, we
found that negative and positive number comparisons showed
parallel distance effect slopes, but negatives took longer than pos-
itives. While prior behavioral studies have not reported accuracy
differences (Tzelgov et al., 2009; Varma and Schwartz, 2011), the
current study found that negative near problems were less accurate
than positive near problems.

Based on extant behavioral literature, two theoretical models
have been proposed for negative number processing. The rule-
based processing model proposes that individuals reason about
negative integers by applying abstract rules on top of magni-
tude representations for positive numbers (Fischer and Rottman,
2005; Shaki and Petrusic, 2005; Tzelgov et al., 2009). For example,
when judging which of two negative integers is greater (−9 vs.
−1), they may strip the negative signs and invert the comparison

FIGURE 7 | Representational similarity in functionally defined IPS ROIs.

(A) Representational similarity between near and far trials was greater for
negative, compared to positive, numbers in the left IPS, centered at (−30,
−52, 38; **p = 0.004). There were no differences in the three other
functionally defined IPS ROIs. (B) Representational similarity in the

functional cluster centered at (−30, −52, 38) was correlated with reaction
time (RT) on negative numbers (*p = 0.032), such that more distinct
representations were associated with faster reaction times. ROIs were
10mm spheres generated around peaks of differential IPS response to
negative vs. positive numbers.
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FIGURE 8 | Representational similarity in cyto-architectonically defined

subdivisions of the IPS. (A) Representational similarity between near and
far trials was greater for negative numbers than positive numbers bilaterally
in hIP1 (*p = 0.027). Differences in hIP2 and hIP3 were not statistically
significant (ps > 0.2). (B) Representational similarity in the left hIP1
between near and far trials was correlated with reaction time (RT) on
negative numbers (*p = 0.016), such that more distinct representations
were associated with faster reaction times.

predicate (greater → lesser), and subsequently rely on a posi-
tive mental number line to compare the absolute magnitudes
(9 vs. 1). In this model, negative magnitudes are not repre-
sented uniquely, but are transformed into positive numbers for
magnitude comparison.

The expanded magnitude model proposes that negative num-
bers (and zero) also have magnitude representations (Fischer,
2003; Varma and Schwartz, 2011). In this case, negative num-
ber representations play a direct role in magnitude compari-
son, as opposed to being translated into positive numbers. This
implies that negative number magnitudes should have a sepa-
rate neural representation distinct from positive numbers. Because
adults have less experience with negative numbers than pos-
itive numbers, the neural representation of negative numbers
may be less-refined than that of positive numbers. Furthermore,
according to Varma and Schwartz (2011) the representation of
negative magnitudes is organized as a reflection of the posi-
tives to instantiate the additional structure of the additive inverse
(X + −X = 0).

The signal level differences found by univariate analyses in
our study are consistent with either a rule-based or an expanded
magnitude representation of negative numbers. Bilateral MFG
activation could reflect rule processing, such as stripping the
negative sign and inverting the comparison, or it could reflect
general task difficulty. Conversely, greater bilateral IPS activation
for negative numbers could reflect more effortful processing for

negative over positive numbers, due to a less robust represen-
tation for negative numbers. Or, it could result from longer
RTs and therefore longer time spent processing number. The
signal level differences between negative and positive numbers
help identify regions associated with negative and positive num-
ber representation, but do not differentiate the two models of
number representation. This is because greater activation may
be due to unspecified task difficulty. Consistent with this inter-
pretation, controlling for RT removed the differences between
negative and positive numbers in both frontal and parietal
regions.

Representational similarity analysis provides a way to exam-
ine patterns of activation independent of overall signal level.
RSA in both functionally and cyto-architectonically defined ROIs
showed that in sub-regions of the IPS, representations of near
and far positive numbers were more differentiated than near
and far negative numbers. If the differentiation of far and near
in negatives is functionally important, then we should pre-
dict an effect on behavior. This is what we found – a greater
degree of differentiation among negative numbers was corre-
lated with faster RTs. These findings point to a unique, but
less well-developed, magnitude representation for negative num-
bers.

Alternate explanations are possible. For example, the applica-
tion of rules might produce more noise in the positive magni-
tude representations when used for negative trials, resulting in
decreased differentiation. However, if this were the case, prefrontal
cortex activation for the application of a constant rule for negatives
should not have diminished when covarying out RT (although
caution should be taken when interpreting null results).

Our preferred interpretation, based on the RSA, is that an
expanded magnitude hypothesis provides a parsimonious model
of negative number representations for the current task. Future
research manipulating instruction, such as by specifically asking
participants to apply a rule-based strategy, could provide stronger
causal evidence for this claim.

CONCLUSION
The field of cognitive neuroscience has focused considerable atten-
tion on how the natural numbers are represented in adults. During
formal education, students are exposed to increasingly abstract
quantitative relations, and mastery of these concepts forms a
foundation for higher mathematics such as algebra and calcu-
lus. Yet little is known about how the brain enables and organizes
abstract quantitative concepts. Examining negative numbers pro-
vides a first step toward a fuller understanding of the neural basis
of these processes. The multivariate analysis technique used here
reveals for the first time that negative numbers appear less well
differentiated than positive numbers in the IPS, and that greater
differentiation within negative number problems is associated
with faster RT on negative problems. These findings support the
proposal that people develop facility with negative numbers by
creating a new representation that incorporates magnitude prop-
erties while remaining distinct from the natural numbers. Beyond
the domain of negative numbers, our findings may reflect a general
property of neural representation: that experience leads to greater
differentiation between stimuli, even for abstract concepts.
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APPENDIX
WHOLE BRAIN RESULTS FOR MIXED COMPARISONS
As shown in Table A1, there were few differences between
mixed and positive trials. The caudate, right precentral gyrus,
and right cerebellum were more active for positive over mixed
trials, and there were no significant clusters that were more
active for mixed over positive trials. There were also no clus-
ters that were more active for mixed over negative trials, though
several regions that were more active for negative over mixed

trials. These included bilateral cerebellum, bilateral intrapari-
etal sulcus (IPS), bilateral superior parietal lobe (SPL), bilat-
eral middle frontal gyrus (MFG), bilateral pre-supplementary
motor area (SMA), the left precentral gyrus, left premotor cor-
tex, left caudate, and the right frontal operculum cortex. Sev-
eral regions more active for negative trials than mixed trials
also showed greater activity in the contrast of negatives over
positives, including bilateral MFG, bilateral IPS, and bilateral
pre-SMA.
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Table A1 | Activation differences between mixed comparisons and positive and negative comparisons.

Brain region Peak

x y z t k

MIXED COMPARISONS > POSITIVE COMPARISONS

No significant clusters

POSITIVE COMPARISONS > MIXED COMPARISONS

Bilat caudate −6 6 8 4.86 133

Right precentral gyrus 46 4 40 4.44 33

Right cerebellum 34 −62 −28 4.43 63

MIXED COMPARISONS > NEGATIVE COMPARISONS

No significant clusters

NEGATIVE COMPARISONS > MIXED COMPARISONS

Right cerebellum 30 −64 −28 7.37 1127

Left cerebellum −24 −70 −20 6.97 874

Left IPS −22 −60 46 6.21 1145

Left precentral gyrus −54 0 42 5.77 306

Left MFG −32 12 28 5.58 390

Right MFG 58 24 28 5.39 536

Bilat cerebellum −6 −80 −22 4.35 306

Bilat pre-SMA 0 12 58 5.27 382

Right frontal operculum cortex 48 18 −4 5.08 85

Left premotor cortex −26 −4 70 5 106

Right IPS 34 −58 42 4.98 302

Right MFG 36 6 64 4.94 67

Left SPL 2 −82 38 4.62 81

Left caudate −14 16 −10 4.46 30

Left precentral gyrus −54 8 20 4.28 62

Right SPL 32 −42 48 4.07 42

Table A2 | Parietal cortex regions that showed significantly greater activation for negative than positive problems and their relationship to

cyto-architectonic maps of the parietal cortex.

Region Number of voxels in the region % of cluster in region % of region activated

RIGHT IPS (30, −64, 48)

R hIP1 48 11.9 21.1

R hIP3 45 11.2 14.8

R area 2 24 5.8 2.5

LEFT IPS (−30, −52, 38)

L hIP1 22 25.0 4.8

LEFT IPS/SPL (−38, −54, 54)

L hIP1 22 48.9 4.7

L hIP3 14 32.4 5.1

L SPL 7PC 3 7.4 1.6

L hIP2 2 4.5 0.9

L SPL 7A 2 4.5 0.1

L area 2 1 2.3 0.1

LEFT POSTERIOR IPS (−24, −68, 42)

No overlap with cyto-architectonic areas

For each significant cluster, the probabilistic region, percentage of activation in the region, percentage of cluster that was in the region is reported. Cyto-architectonically

defined probability maps were used to interpret the locations of the cluster and peaks within subdivisions of the intraparietal sulcus (IPS), superior parietal lobule

(SPL), and somatosensory Brodmann area 2.
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FIGURE A1 | Behavioral performance. Participants were significantly faster and more accurate on mixed comparisons than positive and negative comparisons
(p < 0.001). Mixed comparisons did not display distance effects in accuracy (p = 0.304) or reaction time (p = 0.890). Error bars represent ±1 SE.
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